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n-Beam Lattice Images. V. The Use of the Charge-Density Approximation 
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The simple infinite-aperture charge-density approximation to lattice imaging is extended to include the 
effects of finite aperture and objective-lens spherical aberration. Images computed using these approx- 
imations are compared with images computed by the accurate N-beam technique and with experiment 
in order to establish the bounds of applicability of the extended-charge-density approximations. 

1. Introduction 

It is clear that for many electron micrographs an in- 
tuitive interpretation of the contrast is possible in 
terms of an amplitude object. A brief account of the 
charge-density approximations has been given in the 
earlier papers of this series (Allpress, Hewat, Moodie 
& Sanders, 1972; Lynch & O'Keefe, 1972; Anstis, 
Lynch, Moodie & O'Keefe, 1973; O'Keefe, 1973)* and 
these approximations explain why such intuitive inter- 
pretations are valid. It is appropriate, then, to give a 
more detailed description of the approximations, to 
investigate their bounds, and the level to which they 
agree with experiment. The application of these meth- 
ods to non-periodic objects is treated elsewhere (Lynch, 
Moodie & O'Keefe, 1974). 

2. Theory 

The contrast of an image formed in the electron micro- 
scope is calculated by first determining the complex am- 
plitudes of the waves scattered by the object. These 
waves are then combined with suitable aberration par- 
ameters, multiplied by the propagation function ap- 
propriate to the defect of focus from the Gaussian 
image plane, multiplied by the aperture function, and 
Fourier transformed to obtain the image amplitudes; 
the latter are thert squared to obtain the contrast, As 
has been shown in the preceding papers of this series, 
the first step of the calculation is the most time-con- 
suming. In the series n is used to denote the number of 
diffracted beams summed to obtain image contrast and 
N is used to denote the number of reflexions used in the 
dynamic scattering calculation. 

* This series of publications on n-beam lattice images was 
commenced at a time when it appeared that Acta Crystallo- 
graphica was about to adopt nm as a standard of length, thus 
for the sake of consistency we have retained nm as a unit 
rather than the more usual A. 

2.1. Scattering approximations 
For high voltages the correct limiting form of the 

N-beam solution to the electron scattering as the 
accelerating voltage tends to infinity is given by 

S UnvL(U,V)=o~'[exp {ia~ ~o(x,y,z)dz}l, (1) 
o 

where ac is the Compton interaction parameter, H is 
the crystal thickness, q~ is the crystal potential and 
signifies the Fourier transform (Moodie, 1972). At 
infinite voltage this solution accurately takes into 
account the dynamical interactions within the crystal, 
and so applies to crystals of any thickness. At lower volt- 
ages, ifafisreplaced bya {a-- (n/2 W) (2/[1 + (1 _fl2)1/2]); 
W= accelerating voltage, A = wavelength, t =  v/c}, it is a 
good approximation up to some thickness which de- 
pends upon the voltage. For example, when the ac- 
celerating voltage is 100 kV it gives a good approxima- 
tion to the waves scattered by a crystal composed of 
medium-weight atoms and oriented with the incident 
beam nearly parallel to a principal axis, provided that 
the thickness is less than about 5 nm. 

As the crystal thickness H tends to zero, or the pro- 

S ° jected potential ~op(x,y)= ~o(x,y,z)dz tends to zero, 
0 

the high-voltage limit tends to 

V . ( u , v ) = ~ { 1  + i~¢~(x,y)} . (2) 
This is the form for the scattered wave used by Scherzer 
(1949) and recently used extensively for the estimation 
of image contrast. However, the amplitudes and phases 
for some important reflexions, calculated from equa- 
tion (2), depart significantly from the N-beam solutions 
for a crystal of Nb12029 only 1 nm thick, whereas those 
calculated from the high-voltage limit using equation 
(1) remain in fair agreement to about 5 nm (Fig. 1). 
In general the errors in the Scherzer approximation 
will lead to serious errors in the estimation of image 
contrast for crystals greater than 1 nm in thickness. 
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Moreover the high-voltage limit holds to greater crys- 
tal thicknesses and, as can be seen from equations (l) 
and (2), contains the Scherzer approximation. Within 

this region of  applicability the high-voltage limit can be 
used to simplify the calculation of lattice-image con- 
trast. 
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Fig. 1. Diffracted-beam amplitudes and phases calculated using the full N-beam (N=421)  multislice formulation (solid line), the 
high-voltage-limit (HVL) approximation (dotted line) and the single-scattering (kinematic) theory (dashed line) for Nb12029 
up to 60 nm thick with electrons of 100 keV incident energy. Overall the departure of the kinematic curves from the N-beam 
curves occurs at lower crystal thicknesses than equivalent departures for the HVL-calculated amplitude and phases. This is 
immediately obvious for beams like the 000 (a), but, even where the kinematic amplitudes are closer to the N-beam values than 
are the HVL ones, the HVL phases match the N-beam phases to greater thicknesses than do the kinematic phases (e.g., the 
202 (b) and 004 (c)]. For  some weak beams both amplitude and phase curves remain close together for all three calculations for 
thicknesses up to 5 nm (e.g., the 304 (d)]. 
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All the preceding arguments have been for the case of 
a crystal oriented such that the incident beam is nearly 
parallel to a principal axis, that is, the case of a zone- 
axis diffraction pattern. If the crystal is tilted so that 
there is only a line of strong reflexions, a systematics 
orientation, then the high-voltage limit is valid for a 
thicker crystal (Goodman & Moodie, 1974). 

2.2 Thin lens - infinite aperture 
The simplest theoretical treatment using the high- 

voltage limit considers the image formed by a perfect 
thin lens of infinite aperture (Cowley & Moodie, 1960). 
The out-of-focus condition is then generated by a 
propagation function of the form 

P(h,k)=exp {-ine2(uZ +vZ)} , (3) 

where e = the distance (rim) from the Gaussian focus of 
the lens, negative being underfocus. This propagation 
function then multiples the wave function and the 
image contrast is obtained from the square of the 
modulus of the Fourier transform of the resulting 
amplitudes and phases. If we follow Cowley & Moodie 
(1960) and expand the propagation function as 

e(h,k)  = 1 - iz~e2(u 2 + v2) , (4) 

then the wave function on the image plane becomes 

¢,(x,y) = ~--l[{o~[exp (ia(0p)]}. { 1 -in82(u z + vZ)}] 

= exp (icr~o,)[1-~-~---[sAg .~V2~p,+ ia{[O~op]2\__~_l + (__~y) }}] , O ~ ° P  2 

where ~- denotes Fourier transformation, and the 
image contrast to first order in ~ (Moodie, 1975) is 

[ ea2V2q)p(X,y)], (5) I,(x,y)=gt*g/=(C2 + S z) 1 -  --2-~ 

where C+iS=exp  (ia~op) represents the Fourier trans- 
form of high-voltage-limit amplitudes and phases, and, 
at infinite aperture, [C +iS[ 2= 1. Hence the only term 
giving appreciable contrast is that which is proportional 
to the second differential of the projected potential, 
that is, the projected charge density of the crystal. This 
term is multiplied by the defect of focus, e, so that 
within the limit that e2(u z +v 2) <½ (the criterion that 
the original expansion of the propagator is valid) the 
contrast is proportional to the defect of focus. The 
contrast is zero on the Gaussian focus (e=0) and is 
complimentary (antisymmetric) between positive and 
negative defects of focus. Because a contains the elec- 
tron charge the under-focus image will have high 
density corresponding to regions of high projected 
charge density; the overfocus image will be the reverse. 

2.3 Finite aperture 
A more realistic description requires that the lens be 

of finite aperture. The high-voltage limit tells us that an 
object, represented by a potential distribution, can be 
described in terms of an equivalent phase object. For 
infinite aperture the intensity distribution of the image 

of this phase object is equivalent to the charge-density 
distribution obtained from the second differential of the 
potential, over a range of defects of focus. The applica- 
tion of the Rayleigh theory of image formation to the 
equivalent phase object cannot be expected to give the 
same intensity distributions as the application of that 
theory to the amplitude object represented by the 
charge density. But in fact, with appropriately large 
aperture, the results are sufficiently similar to allow a 
simple interpretation. 

The amplitude distribution on the image plane of the 
infinite aperture lens, to first order in cr and e, is 

~u(x,y)=q(x,y) [1 -  e2 ] ~ -  Gw~, , (6) 

where q(x,y) = exp (ia~0p). Then, on Fourier transforma- 
tion of equation (6) and multiplication by an aperture 
function A(u,v)= l for (u2 +v2)l/2 <r, A(u,v)=O for 
(u z + vZ) '/2 > r, we obtain 

~ '{~, (x ,y)} .A=~Qkk5 U-- --a v-- ~ . A 

+4ne2rr[~QnkS(  u--h-'v-k)a 

• ---, v -  .A (7a) 
a 

where s ~ = (u 2 + va)/4. 
On back transformation this becomes 

{~t(x,y)}= {C + i S } ' -  e2 a{(C+iS)V2~o,(x,y)} , (7b) ~ -  

where the {}' denote Fourier summation over only 
those coefficients allowed through the aperture. 

For an aperture of sufficiently large radius we can 
use the approximation 

[Qhk *SZ V~k] . A " [Qnk . A]*[sZ Vhk • A] , 

which in real space is equivalent to 

{(C + iS) .  Vzq)p(x,y)}.A "" {C.A + iS.A} 
x {v~ , (x ,y ) ,A} .  

• Thus on back transformation we obtain the intensity 
distribution to first order in a and e, 

[ e2 rr{V2(0p(X,y)}, ] I(x,y)=[{C2} '+{$2} '] 1-2-n- . (8) 

The first term in equation (8), {C2}'+ {$2} ', is the 
contrast observed at the Gaussian focus arising from 
the intensity scattered outside the lens aperture. The 
second term is similar to the infinite-aperture expres- 
sion except that the projected charge density now 
arises from a truncated summation. 

If the intensity distribution at the Gaussian focus 
is nearly uniform, then equation (8) becomes 

~2 
I(x,y)= 1-  2~ G{V2~°"(x'Y)}" 
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which is almost the same as the infinite-aperture ex- 
pression [equation (5)] and can be readily computed. 

If the contrast at zero defect of focus is too great, for 
example, because the crystal is too thick or the aperture 
is too small, then there are still two devices which 
would allow intuitive interpretation; the better is 
to divide the image contrast obtained at negative defect 
of focus [equation (8)] by the contrast obtained at the 
Gaussian focus {CZ} '+{S2}  '. This should result in 
quite a good representation of the projected charge 
density, although division implies some means of 
picture scanning and processing. The other approxima- 
tion relies upon the fact that the peaks in the intensity 
distribution of {C2} ' + {$2} ' occur in the same position 
as those for the charge-density distribution. Thus the 
picture can be interpreted as projected charge density 
but the peak heights will be in error. This second ap- 
proximation is obviously less quantitative than the 
first. It can be improved by subtracting the contrast at 
zero defect of focus before interpretation and has the 
advantage that this subtraction process can be done 
photographically. 

It should be noted that if {C2}'+ {$2} ' is not negli- 
gible then it will destroy the antisymmetry about the 
Gaussian focus and the image will only appear to be 
like the object for negative defect of focus. 

2.4 Thick crystals 
By using the divided difference form of the analytic 

solution to the N-beam scattering problem (Moodie, 
1972) it can be shown that the scattered wave function 
v(H),  within a small range of angles about the origin, 
can be approximated by the high-voltage-limit form. 
The range of scattering angles for which the approxi- 
mation is valid becomes smaller as the crystal thickness 
is increased. Thus within this small angular range the 
restricted-aperture charge-density approximation for 
calculating image contrast will be valid. This aEproxi- 
mation is useful for resolutions worse than 20 A, i.e., 
values of (sin 0)/2 less than 0.25 nm -1 (Fig. 2). 

It can also be used in the interpretation, at high 
resolution, of the contrast of thin non-periodic features 
on the surfaces of thick crystals. This application is 
treated in another publication (Lynch, Moodie & 
O'Keefe, 1974) and is only briefly mentioned here for 
the sake of completeness. 

2.5 Lens aberrations 
In a real electron microscope there are three other 

important parameters which can affect image contrast: 
astigmatism, chromatic aberration and spherical aber- 
ration. In most modern instruments, astigmatism can be 
corrected to such a high degree of precision that it may 
be ignored in the interpretation of most images. Chro- 
matic aberration is present to a small extent but its 
effects are well represented by the addition of intensity 
of images for a range of defect of focus. This depth of 
field must be determined for a particular machine. 
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Fig. 2. The table shows the simplest imaging calculation applicable for increasing crystal thickness and resolution for incident 
electron energies of approximately 100 keV (2 = 0.004 nm) and atoms of medium atomic weight (as in Nb12029). Scherzer refers 
to 'the weak-phase-object' approximation; charge density means the 'strong-phase-object' or HVL approximation; while 
N-beam requires a full N-beam dynamical calculation followed by n-beam imaging of the dynamical complex amplitudes. 
This figure relates to the scattering process. In a real microscope with finite G, reference must be made to Fig. 3 to see whether 
any particular approximation is physical. 
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Spherical aberration is of course present in all magnetic 
lenses and has quite a large effect on the image con- 
trast observed. 

If phase changes due to spherical aberration are in- 
cluded in the derivation of the image contrast to first 
order in e and tr, the expression becomes 

a2tr V2~0p(x,y)+ C~2 3 t rV4rpp(x,y) ,  (9) 
I (x ,y)= 1 -  ~ -]-67 

where C~ is the spherical aberration coefficient. 
Thus 

2or 
I (x ,y )= 1 -  ~ R(x,y) , 

where 

R(x ,y)= - 16zr2H ~ {e + 2S~k~.2Cs}s~kVhk 
h, k 

(10) 

with s2= (sin 0)2122=(u 2 + v2)/4. 
Similar expressions apply for restricted aperture; 

the V2~0p(x,y) in equation (8) is replaced by the R in 
equation (10), the summations now being over those 
coefficients included in the aperture. 

Thus we have the hierarchy of approximations [for 
instance, in the non-aberrated case, equations (7 b), (8) 
and (5)], which, providing certain experimental criteria 
can be met, permit direct interpretation of image in- 
tensity in terms of the object structure, without re- 
course to the exacting procedures of N-beam dynamic 
calculations. 

Fig. 2 shows the appropriate calculation for ob- 
taining agreement with experimental images, at a 10 % 
level of accuracy, as a function of specimen thickness 
and required image resolution. This figure is drawn for 
the case of 100 keV electrons and spherical aberration 
coefficients of the order of 3 mm or better. 

The region where naive interpretation is possible is 
confined to thin crystals at low resolution. For thick 
crystals at high resolution the complete calculation is in 
general necessary. Some examples of this latter case can 
be found in part IV of this series (O'Keefe, 1973), but 
as yet these calculations have not been compared with 
experimental images. However, they are believed to be 
accurate since quite good agreement has been obtained 
with experimental diffraction intensities in the case of 
other oxides (Dowell, Goodman & Wilson, 1974). 

2.6 Role of  the propagation function 
As shown in equation (4), the validity of the deriva- 

tion of the hierarchy of approximations depends on the 
applicability of the expansion of the propagation func- 
tion. 

In the most general case of an apertured lens with 
spherical aberration, it is necessary to re-examine this 
expansion. As in Paper IV, the aberrated propagation 

function is found by substituting e + ½Cs22(u 2 + v 2) for 
e in the non-aberrated form. Thus the aberrated propa- 
gator is exp{-i~r2(u2+v2)[e+½C~22(u2+v2)]} and it 
may be expanded as 

1-izr2(u2+v2)[e+½C~22(u2+v2)] , (11) 

o (o) 

. . . . . . . .  

2 I ,x , "11"2 ~/~-- 
o (b) 
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2 

. . . .  

E= - I 0  

o 
"80 

2 

o (d) 

-120 

I 
0 I '0  2"0 

(sin 0)/~. (nm -I) 

Fig. 3. The propagator  a rgument  of  equat ion (11) plot ted 
against s [where s = (sin 0)/2 and (2s) 2 = (u 2 + v2)] for spherical 
aberrat ion coefficients of  0 (a), 0.9 m m  (b), 1.8 m m  (c) and 
2.7 m m  (d) and an incident electron energy of 100 keV (2=  
0.004 nm). Values of the defocus parameter  e (nm) are 
shown. The dot ted line in (a) is the idealized propaga tor  
required by the weak-phase-object approximat ion of  
Scherzer. The P C D  approximat ion requires a parabolic  
phase change with s with a limit of  - rr/2. Thus  for C~=0.9 
m m  and e = - 6 0  nm the requirement  is met for resolutions 
of  >_6/1, ( s=0 .8  nm-1) ,  while for Cs=2.7  m m  and e =  - 110 
n m  the limit is 8 /~ ( s=0 .6  nm-X). So long as the propaga tor  
remains within the limits +_ zr]2 an aberrated PCD approxi-  
mat ion  will apply (e .g . ,  for G = 0 . 9  m m  and e = - 5 0  n m  
this approximat ion  will hold down to resolutions of  3/l ,  
[s = 1 "6 n m -  1)]. 
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Fig. 4. (a) Nb12029 image contrast  for zero defocus (6=0)  and zero spherical aberrat ion (Cs=0)  represents the contrast  due to 
exclusion of  beams by the objective aperture.  Crystal thickness, H, ranges f rom 2 n m  to 10 nm. The aperture was set to allow 
39 beams to contr ibute  to the image. Up  to 6 n m  the zero-defocus N-beam image has peaks in the posi t ions of  peaks in the 
equivalent PCD image. (b) Images for - 6 . 4  n m  under-focus  (top), zero defocus (centre) and 6.4 n m  over-focus (bot tom) for 
a 5 nm thick crystal of  Nb~2029. The aper ture  was set to allow 39 beams to contr ibute  to the images. The N-beam image 
(column 1) is dominated ,  at both under-  and over-focus, by the zero-defocus contr ibut ion  (G). when the zero-defocus contrast  
is subtracted (column 2) or divided out  (column 3) the complementar i ty  of  under-  and over-focus images which exists in the 
PCD images (column 4) is to some extent restored. 

[To face p. 304 
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Fig. 5. (a) N-beam lattice images of N b l 2 0 2 9  calculated for n=39 ,  C~= 1-8 mm, H = 5  nm and defects of focus from - 100 
to - 2 0  nm in 10 nm steps. As the defect of focus approaches the value yielding the best image (e= - 6 0  nm), the character 
of the image becomes stationary with respect to defocus. As the value of e becomes further away from the best value then 
image character changes rapidly• (b) Maximum contrast in N-beam lattice images plotted as a function of defocus for crystals 
of Nb~2029 of three thicknesses• Spherical aberration is Cs = 1.8 mm and n = 39. The graphs cover only that range of defocus 
where the maximum image intensity occurs at tunnel sites. For  each thickness the 'best' or intuitively interpretable image occurs 
at the maximum of the curve• (c) N-beam lattice images of Nb~O29 calculated for n=39, Cs= 1-8 mm and crystals of 
thickness H = 3 ,  5 and 7 nm. The top row of images is calculated for the defects of focus yielding maximum intensity at 
tunnel sites. The lower row of images is calculated for the Scherzer 'opt imum' defocus of - 9 0  nm. For the two thicker 
crystals the image obtained at the Scherzer condition does not look like the structure• 
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39 and (d) n =  59]. At better resolutions crystal thickness becomes more  critical (Fig. 2) so that at H = 4  nm the N-beam contrast  
is greater than that of  the PCD image [e.g., (d) n = 59 and ( f )  n = 87] ; when H is lowered to 2 nm (ell  being kept constant)  the 
fit for large n improves [e.g., (e) n = 8 7 ,  H = 2  nm is closer to the n-PCD image than ( f )  n = 8 7 ,  H = 4  nm]. 

Cj(mm)----.- o 0-9 
£ ( n m )- - - . . .P-  - 20  - 50  

~o  ee l  oo  
• ~ dp, q ~ dl~l - 

, e  o o  

= 

1"8 

- 7 ' 5  

Fig. 7. Aberrated PCD images show good agreement  with 
aberrated N-beam images for crystals of thickness H =  3 nm 
and spherical aberrat ion coefficients of  (a) 0, (b) 0.9 m m  and 
(c) 1.8 mm.  The defocus e (marked)  is chosen so that  the 
aber ra ted-propagator  a rgument  remains within + n/2. 

Fig. 8. Experimental  image of  Nb~2029 (courtesy S. Iijima). 
Inserts:  left-hand side shows the N-beam image calculated 
for n = 5 9 ,  C s = l - 8  ram, H = 3  nm and e = - 7 5  nm;  right- 
hand  side shows the PCD image calculated for the same 
values of  the parameters  n, Co, H and e. 
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if the argument (second term) is less than one within 
the aperture. 

In Fig. 3 the argument in the propagation function 
is shown as a function of scattering angle for a variety 
of defects of focus and spherical aberration coeffi- 
cients. Fig. 3 also shows the argument that is required 
in the Scherzer (1949) approach, i.e. zero at the origin 
and - z  c/2 elsewhere within the aperture. As can be 
seen, when the spherical aberration is zero, the argu- 
ment of equation (11) has a parabolic form [equation 
(4)] and is symmetrical about zero defect of focus. This 
is the form of the argument which leads to a direct 
interpretation in terms of the restricted-aperture pro- 
jected charge density for negative defect of focus. For 
larger apertures the range of validity as a function of 
defect of focus becomes smaller. Of course, there is also a 
definite lower limit to the aperture size, which is de- 
pendent on the structure. As the spherical aberration 
coefficient is increased in magnitude the aperture size 
for which the argument of the propagation function is 
nearly parabolic becomes smaller. However, for smaller 
ranges of defect of focus, the argument remains within 
the bounds of + ½zr and thus the image can be inter- 
preted as the projected charge density viewed through 
a spherically aberrated lens. Finally, with further in- 
crease in the spherical aberration coefficient, the ex- 
cursions in the argument of the propagation function 
are so large that the approximation is only valid for 
low-resolution work (greater than 20 A). 

It is of interest to note in Fig. 3 that the comparison 
of the Scherzer curve with a curve typical of a modern 
microscope illustrates that the Scherzer-type approxi- 
mation to the propagation function is quite inaccurate. 

3. Experimental criteria 

Our object is to compare images calculated by the 
precise methods used in part IV with those calculated by 
the various approximations described above, in order 
to illustrate the bounds of validity of these approxima- 
tions, and finally to demonstrate agreement with ex- 
perimental images. The substances chosen as examples 
are mixed titanium-niobium oxides, because of the 
many good images, of these materials which have ap- 
peared in the literature (Iijima, 1971; AUpress & San- 
ders, 1973). The results show the conditions for validity 
of the charge-density approximation. The computed 
images were obtained as half-tone displays on a 
storage oscilloscope (Billington & Kay, 1974). 

3.1 Crystal thickness 
Fig. 4(a) illustrates the effect of specimen thickness 

on the image. As the specimen becomes thicker more of 
the energy is scattered outside the aperture and thus 
the amount of image contrast in the apertured zero- 
defect-of-focus image becomes more appreciable. It can 
be seen that the contrast at zero defect of focus for a 
crystal of 6 nm thickness has peaks in the same place 
as the projected structure and so a naive interpretation 

of the image contrast is still possible provided that the 
weights of the peaks are not taken into consideration. 
Fig. 4(b) illustrates the effect of the zero defect-of- 
focus contrast, the {C2} ' +{$2} ' term of equation (8), 
on the N-beam image, and the degree to which this 
term may be compensated for in order to obtain a more 
exact fit with the charge-density approximation. These 
sets of calculations have been carried out for a spherical 
aberration coefficient of zero and they have application 
only to low-resolution images obtained from a real 
electron microscope. Thus we see that, for a zone-axis 
orientation of a crystal composed of atoms of medium 
atomic weight and an accelerating voltage of 100 kV, 
the crystals should be no thicker than 5 nm. Of course, 
as the accelerating voltage increases, the crystal thick- 
ness can be increased. For a less strongly coupled 
orientation - for example, a systematics case - the high- 
voltage limit will hold for a thicker crystal (~  30 nm). 

3.2 Defocus 
3.2.1 Stationary point 

It is important to note that at the intuitively inter- 
pretable defocus (for any particular crystal thickness) 
the rate of change of image character is at a minimum. 
This is illustrated for a 5 nm thick crystal of Nb12029 in 
Fig. 5(a). The three central images (e = - 70, - 60, - 50 
nm) differ only slightly, whereas the further the value 
of e is from the region of intuitive interpretation, the 
more rapid is the change of character. 

The low rate of change of character with defocus over 
a range straddling the intuitively interpretable image 
means that the effects of chromatic aberration (depth 
of focus) are minimized within this range of defocus. 

3.2.2. Best image 
Within its region of applicability the PCD theory 

(O'Keefe, 1973) predicts that the value of the defocus 
parameter of the intuitively-interpretable image ap- 
proaches zero, as crystal thickness increases. This is 
easily demonstrated by rewriting equation (5) as 

Is(x'Y)=(C2-b S2) [1-eH-ff~" V2q~(x'Y)] 

where H is the crystal thickness and V2~a~(x,y) is the 
projected charge density per unit crystal thickness. For 
N-beam images of Nbt2029 calculated for increasing 
crystal thickness (3, 5, 7 nm) we find a maximum in the 
intensities of sites corresponding to tunnels in the 
structure for increasing defects of focus ( - 7 0 ,  -60 ,  
- 4 5  nm respectively [Fig. 5(b)]. However, if the 
Scherzer criterion for 'optimum' defocus of a thin 
crystal is applied to these images (n--39 beams and 
Cs = 1.8 mm), we obtain an 'optimum' defocus value of 
- 9 0  nm. Fig. 5(c) shows N-beam images at the Scher- 
zer optimum ( e = - 9 0  nm) and at e = -  70, - 6 0  and 
- 4 5  nm for the three crystal thicknesses. 

Examination of the dependence of n-beam lattice- 
image character on defocus shows that the image 

A C 31A- 3 
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which 'looks most like the structure' occurs for the 
special case of this compound at this aperture, at the 
defocus where image contrast is a maximum; i.e., 
where the image intensity at the positions of tunnels in 
the structure reaches a maximum [Fig. 5(b)]. 

3.2.3 Propagator 
With n=  39 for Nbt2029 we find s=  (sin 0)/2 has a 

maximum value of 1.1 nm -1. For this value of s and 
Cs= 1.8 mm, Fig. 3(c) shows that defocus must be 
within - 80 to - 30 nm if an interpretation in terms of 
an aberrated PCD image is to be permitted. Thus, for 
H = 5  nm, the images of Fig. 5(a) at e = -  100, - 9 0  
and - 2 0  nm do not show the charge density and the 
image at 8= - 3 0  nm is strongly aberrated. 

3.3 Aperture 
The diameter of the aperture must be balanced be- 

tween the competing requirements of the charge-density 
approximation and spherical aberration. For easy inter- 
pretation the charge-density approximation requires 
the aperture to be large, while the effect of spherical 
aberration becomes increasingly strong as the aperture 
is increased. As the diameter is increased beyond a cer- 
tain size it can be shown that the spherical aberration 
coupled with the divergence in the illumination will 
impose a virtual aperture which can be smaller than the 
physical aperture, and further increase of the physical 
aperture will not increase the resolution (O'Keefe & 
Sanders, 1975). 

Fig. 6 illustrates the effect of changing the aperture 
for a fixed crystal thickness. It can be seen that, for this 
particular crystal structure, an aperture which includes 
only 13 beams no longer permits interpretation of the 
image contrast as the projected charge density of the 
object. However, once the aperture has been increased 
to include 39 beams, the agreement is quite good and, 
in the absence of spherical aberration, the agreement 
becomes better the larger the aperture. Of course, the 
permitted range of the defect of focus is much less with 
a larger aperture. Now, in a real microscope depth of 
field is determined by chromatic aberration; thus 
chromatic aberration would start to destroy image con- 
trast at a resolution of the order of 3 A. 

3.4 Spherical aberration 
Fig. 7 shows the PCD image contrast at a fixed aper- 

ture as a function of spherical aberration coefficient 
compared with the N-beam image contrast. At the 
aperture chosen, once Cs exceeds 2 mm, there is no 
defect of focus for which the expansion of the propaga- 
tion function is valid, and a smaller aperture would 
need to be chosen for such a machine. As can be seen, 
quite good agreement can be achieved. 

4. Comparison with experiment 

Finally, Fig. 8 shows the calculation of the projected 
charge-density approximation, for Nbt2029 with an 

aperture of 59 beams and a spherical aberration coeffi- 
cient of 1-8 mm, compared with the calculated N-beam 
image and the experimental image obtained by Iijima 
(private communication). There is quite good agree- 
ment. The aperture used in the charge-density calcula- 
tion is less than the experimental aperture because of 
the interaction of the spherical aberration of the objec- 
tive lens with the divergence in the illuminating beam. 
This effect will be discussed in part VI (O'Keefe & 
Sanders, 1975) of this series. 

5. Conclusions 

The above discussion leads us to conclude that naive 
interpretation of image contrast in terms of the pro- 
jected charge density of the object is possible provided 
that: 

(a) The crystal thickness is sufficiently small that the 
high-voltage limit for scattering is valid. For 100 keV 
electrons and elements of moderate atomic number, this 
puts an effective upper limit on crystal thickness of 5-7 
nm in a zone-axis orientation and approximately 30 
nm in a systematics orientation (part III). 

(b) The defect of focus is adjusted on the negative or 
under-focus side, sufficiently to give adequate contrast 
but not enough for the propagation-function expansion 
to become invalid. Again, for current electron micro- 
scopes at high resolution, this requirement means a 
defect of focus of from - 5 0  to - 8 0  nm. The amount 
of defocus permissible decreases as the aperture size 
is increased. 

(c) The aperture is large enough to allow many beams 
to contribute to the image. This implies of the order of 
20 reflexions for a periodic object. The upper limit 
to aperture size is set in practice by the magnitude 
of the spherical aberration coefficient and the incident- 
beam divergence of the machine. In current micro- 
scopes this seems to imply a resolution limit at 100 keV 
of 3~--4 A (O'Keefe & Sanders, 1975). Thus interpreta- 
tion of very small features in the image contrast as at- 
oms is quite unreliable unless a proper and complete 
N-beam calculation is carried out. Certainly no naive 
interpretation of such images is possible. 

The above results seem to indicate possible improve- 
ments in an electron microscope which would lead to 
an increase in resolution. One possibility stems from 
the fact that, if the wavelength is reduced, the high- 
voltage limit becomes more accurate for thicker 
crystals. Thus, if an objective lens can be constructed 
for 200-300 keV electrons with the same spherical 
aberration coefficient as the current 100 keV lenses, 
and the quality of the illumination system be improved 
such that the divergence is 2 × 10 -4 tad, then the resolu- 
tion limit for naive interpretation of a micrograph 
should become 2 A at 300 keV-a considerable improve- 
ment. 

We wish to thank Dr S. Iijima for providing the 
electron micrograph used in Fig. 8 and permission to 
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publish it, and Dr J. V. Sanders for comprehensive 
criticism of the manuscript. 
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Lattice images were computed with increasing incident-beam divergence with spherical aberration taken 
into account. The effect is as if the outer diffracted beams transmitted by the objective aperture do not 
contribute to the image, so that the resolution is effectively less than that expected from the aperture size. 
Images of Nb12029, calculated with the inclusion of this effect, show improved agreement with experi- 
mental images. 

1. Introduction 

An electron microscope without aberrations would 
give a lattice image of great detail and contrast, which 
could be simply interpreted if the specimen were thin 
enough. The most important aberration is, of course, 
spherical aberration of the objective lens, and its effect 
on the image is generally reduced by inserting an ob- 
jective aperture to exclude the diffracted beams whose 
phases are most severely modified. The aperture size is 
usually carefully selected to match the value of the 
spherical aberration coefficient (Cs) of the objective 
lens (Scherzer, 1949). The effects of spherical aberra- 
tion and of the introduction of an objective aperture 
introduce complications into the interpretation of the 
lattice image, and these have been discussed in general 
in part I,* in Allpress & Sanders (1973) and in detail in 
part IV.* It was shown in part IV that for a thin-enough 
crystal, the image could be simply approximated by 

* Previous papers in this series are: Part  I - Allpress, Hewat,  
Moodie  & Sanders (1972). Part  II - Lynch & O'Keefe (1972). 
Part I I I -  Anstis, Lynch, Moodie  & O'Keefe (1973). Part  IV - 
O'Keefe (1973). Part  V - Lynch, Moodie  & O'Keefe (1975). 

calculating a 'restricted, projected charge density' 
(n-PCD) image, which had a resolution determined by 
the number of diffracted beams, n, which were trans- 
mitted through the objective aperture. 

Earlier in this series, the other aberrations introduced 
into the lattice image by the imperfections in the elec- 
tron microscope were classified into two groups: 

(a) those which modify the image, but without loss of 
detail; and 

(b) 'smearing' aberrations which produce over- 
lapping differences in detail and hence result in loss of 
detail; for example the energy spread of the electrons 
produces an indefiniteness into the position of the 
image plane, and hence produces the superposition of 
a number of different images in any selected image 
plane. 

A consideration of the effect of these various aber- 
rations showed that, of those of the 'smearing' type, 
the divergence of the incident illumination could be the 
most important. Two ways in which divergence in- 
fluenced the image were previously considered: 

(i) The amplitudes and phases of the diffracted 
beams depend upon the angle of incidence of the elec- 
tron beam. For crystals thin enough to satisfy n-PCD 
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